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Abstract 11 

Candida albicans is both the most common fungal commensal microorganism in healthy 12 

individuals, as well as the major fungal pathogen causing high mortality in at-risk 13 

populations, especially of immunocompromised patients. In this review, we summarize the 14 

interplay between the host innate system and C. albicans, ranging from how the host 15 

recognizes, responds and clears C. albicans infection, to how C. albicans evades, dampens 16 

and escapes from host innate immunity. 17 

  18 
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Introduction 19 

Candida species, the most common human fungal pathogen, ranks as the fourth cause of 20 

nosocomial bloodstream infections, with up to 40% mortality in epidemiological studies 21 

(119). Candida species colonize asymptomatically around 30 to 50% of individuals in a 22 

population at any given time, but during conditions when the host defense of the individuals is 23 

weakened, they can cause both mucosal and systemic infections (14). Risk factors such as 24 

neutropenia, systemic antibiotics exposure, central venous catheter, and prolonged ICU 25 

(intensive care unit) stay, predispose individuals to invasive and even life-threatening 26 

systemic candidiasis (119).  27 

 28 

In the past decades, a sustained effort has been done to unravel the interplay between the host 29 

immune system and Candida. On the one hand, ample knowledge has been gained regarding 30 

the host defense mechanisms against Candida species, starting from recognition, to signal 31 

transduction and fungal clearance/killing. On the other hand, the mechanisms through which 32 

Candida evades the host defense armory were also investigated extensively. In this review, 33 

we aim to bring these two fields together and present a comprehensive view of the interplay 34 

between Candida and host innate defense, with a specific focus on how yeast-to-hyphae 35 

morphological transition contributes to recognition by the host and to the triggering of a 36 

protective immune response against Candida infection. While the incidence of non-albicans 37 

Candida species as etiologic agents of invasive candidiasis increased in the last decades (42), 38 

Candida albicans remains the most prevalent species in both mucosal and systemic infections. 39 

Most of the Candida-host interaction studies have investigated the interaction of C. albicans 40 

with the immune system, and therefore this review will focus on this pathogen. 41 

 42 

Recognizing the intruder 43 
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I. Pattern Recognition Receptors 44 

The first fundamental aim of host innate immunity is to distinguish self from non-self. Since 45 

Janeway proposed the concept of pattern recognition (66), a plethora of pattern recognition 46 

receptors (PRRs) have been identified that recognize so-called pathogen-associated molecular 47 

patterns (PAMPs). Several excellent reviews have extensively discussed how innate immune 48 

system recognizes Candida species (32,78,80). In this review we will therefore only point out 49 

the key receptors and their specific fungal ligands (Figure 1). 50 

 51 

Candida cell wall structure is composed of chitin, β-glucans and mannoproteins. The 52 

polysaccharide structures of the cell wall of C. albicans are recognized by two classes of 53 

membrane-bound PRRs: the Toll-like receptors (TLRs) and the C-type lectin receptors 54 

(CLRs). The first PRRs discovered to recognize C. albicans were the TLRs, with TLR2 55 

recognizing phospholipomannan (48), while the O-linked mannan has been shown to be 56 

recognized by TLR4 (79,101). In contrast, other TLRs such as TLR1 and TLR6 play a 57 

secondary role, and they do not seem to be essential for antifungal defense in candidiasis (81). 58 

The second major PRR family that recognizes Candida PAMPs is the CLRs. While β-glucans 59 

are recognized by dectin-1 (12), the N-linked mannan is recognized by the macrophage 60 

mannose receptor (79). Dectin-2 was initially reported to recognize the high-mannose 61 

structure in hyphae (63,95), but recently α-mannan on both yeast and hyphae was shown to be 62 

recognized by dectin-2 as well (93). DC-SIGN is another important receptor on the dendritic 63 

cells that recognizes Candida mannan (16). Galectin-3 has been shown to play a role in 64 

recognizing the β-mannosides of C. albicans (47). Besides, several additional C-type lectin 65 

receptors (CLR), such as Mincle (13) and SCARF1/CD36 (65) were reported to be involved 66 

in Candida recognition, but the specific ligands are yet to be identified. Last but not least, 67 
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MBL (mannose-binding lectin), a soluble CLR, mediates Candida opsonization and uptake 68 

via binding to Candida mannan and to the surface C1q receptor on the phagocyte (11). 69 

 70 

In addition to the recognition of fungal PAMPs by membrane-bound receptors, several PRRs 71 

were shown to recognize Candida intracellularly. TLR9 has been demonstrated to recognize 72 

C. albicans DNA and induce cytokine production in dendritic cells (70). However, there was 73 

no difference reported of susceptibility between wild type and Tlr9-/- mice in a model of 74 

disseminated candidiasis, suggesting a redundant role of TLR9 for systemic anti-Candida 75 

defense (107). Although TLR9 is recruited to C. albicans containing phagosomes, one study 76 

showed that the macrophages from Tlr9-/- mice produce higher TNF-α, suggesting a 77 

modulatory  role of TLR9 in host anti-Candida innate immune response (50). Receptors of the 78 

nucleotide-binding domain leucine-rich repeat-containing receptors (NLRs) are PRRs 79 

recognizing intracellular PAMPs, and one of their main function is to activate caspase-1 80 

within a protein complex called the inflammasome, leading to processing and activation of 81 

cytokines of the IL-1 family (10). Among the NLRs, NLRP3 (NLR family pyrin domain-82 

containing 3) has been suggested to play an important role for anti-Candida host defense. It 83 

has been reported that Nlrp3 and ASC knockout mice were more susceptible to both systemic 84 

(41,52) and mucosal (43) Candida infections, suggesting a role of NLRP3 inflammasome for 85 

anti-Candida defense. Intriguingly, caspase-1 knockout mice are not more susceptible to 86 

disseminated candidiasis (67), arguing for the presence of alternative inflammasome-87 

independent mechanisms for the production of bioactive IL-1β. Therefore, further 88 

investigations of the role of NLRP3 and ASC in inflammasome-independent function are 89 

warranted.  90 

 91 

II. Danger Recognition Receptors 92 
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In addition to PRRs, danger recognition receptors have been proposed to activate host defense 93 

by recognizing endogenous danger signals. The protease-activated receptors (PARs) are G-94 

protein coupled receptors that are activated upon proteolytic cleavage of their N-terminal tail. 95 

Instead of directly sensing the PAMPs, PARs function as danger-sensing receptors that are 96 

activated by either a protease from host, e.g. elastase and cathepsin G from neutrophils, or by 97 

proteases from Candida, e.g., secreted aspartic proteases. It has been shown that PAR1 98 

expression was upregulated in mice infected with Candida and the cross talk between PAR1 99 

and TLR2 could promote Candida-induced inflammation (71). However, in an attempt to 100 

translate these finding from mice to humans, we were not able to find direct evidence of the 101 

involvement of PAR1/PAR2 in C. albicans-induced pro-inflammatory cytokine in human 102 

peripheral mononuclear cells (17). Nevertheless, this does not yet exclude an in-vivo role of 103 

PARs in Candida infections. Therefore, future studies of the role of PAR during Candida 104 

infection in different niches are needed. 105 

 106 

Cell types involved in host innate defense against Candida infection 107 

I. Epithelial cells 108 

The mucosal epithelium is the first line of defense against Candida species. It has been long 109 

acknowledged that the epithelium has a function as a passive physical barrier to restrain 110 

Candida from invasion of the underlying tissue. However, recent studies have broadened our 111 

knowledge about the active role played by epithelial cells in triggering immune responses. 112 

Oral epithelial cells express most of the TLRs, with the exception of TLR5 and TLR7 (114), 113 

to recognize invading microorganisms. Upon recognition of the invading Candida, epithelial 114 

cells secrete antimicrobial peptides, such as β-defensins (2) and LL-37 (53), to clear/control 115 

fungal infection directly. For example, in response to C. parapsilosis, human gingival 116 

epithelial cells upregulate TLRs and anti-microbial pepetides, such as hBD-1 (human β-117 
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defensin 1) and hBD-2, to inhibit fungal growth (5). Similar results were also observed when 118 

C. famata was used to stimulate oral epithelial cells (6).  119 

 120 

In addition, both oral (100) and vaginal (8) epithelial cells could inhibit Candida growth in a 121 

contact-dependent manner. Although proinflammatory cytokines produced by epithelial cells 122 

have no direct anti-fungal effects (55), they serve as signals to mucosal inflammatory cells to 123 

boost their anti-fungal function. Weindl and colleagues have shown in a reconstituted human 124 

epithelial model that epithelial cells were protected from Candida infection when neutrophils 125 

were present (114). By addition with anti-TNF-α antibody, the protective effect was partially 126 

inhibited. Therefore, epithelial cells may “sound the alarm” by inducing the production of 127 

cytokines and chemokines to recruit/activate other immune cells.  128 

 129 

Cytokines produced from immune cells also play an important role in epithelial immunity 130 

against Candida infection. It has been shown that IL-22, the key cytokine produced by T-131 

helper 22 subset of lymphocytes (Th22), synergistically induce the production of hBD2, 132 

S100A7 and CXCL-10 together with TNF-α in keratinocytes (26). IL-22 and TNF-α 133 

combination also render a protective effect of increasing epidermal integrity against C. 134 

albicans infection (26). This highlights the cross-talk between epithelial and immune cells in 135 

anti-Candida infection. 136 

 137 

Site-specific differences of anti-Candida immunity also need to be taken into account. Oral 138 

and vaginal candidiasis are two most commonly found Candida infections in humans. It is 139 

generally considered that innate and cell-mediated immunity are important for mucosal anti-140 

fungal defense, as exemplified by the high prevalence of oropharyngeal candidiasis (OPC) in 141 

the AIDS patients due to the loss of CD4 T cells (30). The role of cell mediated immunity for 142 
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host defense at the level of vaginal mucosa is less clear, and no solid evidence for the 143 

protective role of the innate immunity against vaginal infection was found (29). Moreover, 144 

vaginal epithelia was shown to express S100A8 and S100A9 upon Candida infection, which 145 

recruit PMNs to the infected vagina (121). However, unlike the protective role of PMNs in the 146 

oral candidiasis (96), the infiltrated PMNs in the vagina are associated with symptomatic 147 

vaginal infection (31). 148 

 149 

II. Phagocytic cells 150 

A. Polymorphonuclear neutrophils - PMNs  151 

Phagocytes are believed to be the most effective cell type for controlling and clearing 152 

Candida infection. Among the phagocytes, PMNs play a critical role in host defense against 153 

both mucosal and disseminated candidiasis (105). Several proinflammatory cytokines have 154 

been reported to be responsible for the recruitment of PMNs to the site of infection, such as 155 

IL-6 (92,109), IL-8 (7) and TNF-α (82). Recently, IL-17 has been shown to be crucial to 156 

stimulate granulopoiesis (97) and recruitment of neutrophils to the site of infection (122). 157 

Several studies, though not all, have shown that mice deficient in IL-17 or IL-17 receptor are 158 

more susceptible to systemic (45) or mucosal Candida infection (22). In contrast, others have 159 

suggested deleterious role of IL-17 through overwhelming inflammatory reactions (24). In 160 

humans, Th17 responses are severely defective in patients with chronic mucocutaneous 161 

candidiasis (108). Similarly, patients with hyper-Ig E syndrome also suffer from oral and 162 

mucocutaneous candidiasis due to the defective Th17 response (21). Another line of evidence 163 

on the role of Th17 for antifungal defense comes from the dectin-1/CARD9/Th17 pathway, as 164 

well as for the occurrence of chronic mucocutaneous candidiasis in patients with IL-17F or 165 

IL-17 receptor deficiencies (89). Patients with defective dectin-1 (28) and /or downstream 166 
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adaptor CARD9 (38) suffer from mucocutaneous candidiasis. Therefore, Th17 response is 167 

less likely to be deleterious, but rather protective in human mucosal anti-fungal response.  168 

 169 

In addition to proinflammatory cytokines, the hematopoietic growth factors granulocyte 170 

colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor 171 

(GM-CSF) are also critical for recruitment and activation of PMNs (51,54). In addition to 172 

direct killing of C. albicans, it was demonstrated that PMNs are the only cell type in the blood 173 

which could inhibit C. albicans germtube formation (33). 174 

 175 

Phagocytes, and especially PMNs, kill Candida both intracellularly and extracellularly. Once 176 

Candida is phagocytosed by phagocytes, the engulfed microorganisms are processed through 177 

fusion with lysosomes into phagolysosomes. The engulfed Candida is killed within the 178 

phagolysosome by hydrolytic enzymes, antimicrobial peptides and the reactive oxygen 179 

species (ROS) (3). The formation of the candidacidal radical peroxynitrite (ONOO-) due to 180 

superoxide anion (O2
-) and nitric oxide release is another mechanism of intracellular killing 181 

(111). Recently, a novel extracellular mechanism of killing Candida was shown to be exerted 182 

by neutrophils. Upon encountering Candida, in addition to direct killing through 183 

phagocytosis, neutrophils inhibit Candida growth by releasing neutrophil extracellular traps 184 

(NETs) which contain the antifungal peptide calprotectin (104). 185 

 186 

B. Mononuclear phagocytes – monocytes/macrophages 187 

The role of mononuclear phagocytes in disseminated candidiasis is less well established. In a 188 

mouse model of macrophage depletion, a slower clearance of Candida from the bloodstream 189 

was observed (90), suggesting the involvement of macrophages in host defense against 190 

systemic Candida infections. However, one study using depletion of monocytes has suggested 191 
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that mice with monocytopenia are equally susceptible to Candida as control mice, reinforcing 192 

the dominant role played by PMNs in terms of anti-Candida infection by the host (105). It 193 

was proposed that the low candidacidal activity of macrophages is due to the reduced 194 

myeloperoxidase activity and decreased superoxide generation during the macrophage 195 

differentiation (94). In addition to the oxidative candidacidal mechanism, macrophages 196 

adherent to type 1 collagen matrices were more capable of killing ingested Candida by 197 

enhancing the fusion of yeast-containing phagosomes with the lysosomes (83). This implies 198 

that macrophages in contact with the extracellular matrix might be more efficient to kill 199 

Candida, compared to macrophage in an in vitro experimental setup. 200 

 201 

C. Dendritic cells 202 

As a professional antigen-presenting cell, DCs reside and patrol in the skin and mucosal 203 

surface, and they ingest Candida once tissues are invaded. Candida is internalized by DCs via 204 

MR and DC-SIGN (15,16), leading to processing and presentation of Candida specific 205 

antigen via MHC class II. DCs discriminate between yeast and hyphae forms of C. albicans, 206 

and induce T helper cell differentiation. Ingestion of yeasts primes T helper type 1 cells (Th1), 207 

whereas ingestion of hyphae inhibits IL-12 and Th1 differentiation, favoring Th2 208 

differentiation. Thus, DCs bridge the innate and adaptive antifungal response by recognizing 209 

different morphologies of Candida (23). 210 

 211 

Soluble factors 212 

In addition to aforementioned cell-mediated anti-fungal responses, several blood soluble 213 

factors, such as complement and antibodies, also contribute to host anti-Candida immunity. 214 

The complement system can be activated through three pathways: the classical pathway (CP), 215 

the alternative pathway (AP) and the lectin pathway (LP). All three pathways can be activated 216 
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by Candida (98,124,125). The opsonized Candida can be more efficiently ingested by 217 

phagocytes through the interaction between the CR3 and C3b, which is deposited on the 218 

Candida surface (62), or Fc receptor and the anti-Candida antibody (4). In contrast, the thick 219 

fungal cell wall prevents the killing mechanisms mediated by the membrane attack complex. 220 

 221 

Apart from the role of mediating phagocytosis through surface opsonization, we have 222 

identified a crucial role of anaphylatoxin C5a in augmenting C. albicans-induced IL-6 and IL-223 

1β production in PBMCs (18). By using the specific blocking antibody against C5a or the C5a 224 

receptor antagonist, a clear reduction of cytokine production induced by C. albicans in the 225 

presence of serum was observed. Moreover, using serum isolated from patients with various 226 

complement deficiencies, we demonstrated a crucial role of C5, but not the membrane attack 227 

complex, for C. albicans-induced IL-6 and IL-1β. These findings reveal a central role of 228 

anaphylatoxin C5a in augmenting host proinflammatory cytokine production upon contact 229 

with C. albicans. It was also demonstrated that C5-deficient mice are more susceptible to 230 

systemic C. albicans infection, resulting in a higher fungal burden in the organs (73). A recent 231 

study using computational analysis proposed that different combinations of C5 and C1r/s 232 

alleles could predict the survival of different mouse strains in the systemic Candida infection 233 

model (86). This implies that reduced C1 deposition in the susceptible mice resulted in 234 

reduced C5 binding and activation. 235 

 236 

Evasion of Candida from the host defense mechanisms  237 

As a commensal microorganism surviving in various host niches, Candida encounters a 238 

continuously hostile environment, in terms of host immune system, pH, nutrition acquisition 239 

and competition with the other microorganisms in the microflora. Here we will specifically 240 

focus on the strategies employed by Candida to escape/evade host innate defense (Figure 2). 241 
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 242 

I. Yeast-to-hyphae transition 243 

C. albicans is a dimorphic fungus. The morphological switch between yeast and hyphae is 244 

considered to be the main virulence factor of C. albicans. Through the dissection of the 245 

molecular mechanisms responsible for the yeast-to-hyphal transition, several transcriptional 246 

factors have been identified to be responsible for the morphological transition. These 247 

transcriptional factors are activated by different environmental stimuli and have been 248 

reviewed previously (118). Nonfilamentous C. albicans strains with defective transcriptional 249 

factors such as efg1 and cph1 has been shown to be avirulent or less virulent in mice infection 250 

models (56). This highlights the fact that morphological transition is an important virulence 251 

factor for C. albicans. In the systemic infection model in mice, C. albicans was readily 252 

recognized and phagocytosed in the blood stream. Once the yeast form of C. albicans is 253 

phagocytosed, the production of carbon dioxide within the macrophages induces the 254 

adenylcyclase and cAMP-dependent protein kinase A pathway, thereby activating Efg1p, 255 

which is the major transcription factor responsible for yeast-to-hyphal transition. Formation of 256 

hyphae will eventually lead to piercing and killing of macrophages by C. albicans hyphae 257 

(37,61). In the oral experimental candidiasis model, hyphae formation was also shown to 258 

inhibit human-defensins expression, as another example of how yeast-to-hyphae transition 259 

subverts host innate immunity (57).  260 

 261 

Intriguingly, hyphae-locked mutants as well as yeast-locked mutant both have been 262 

demonstrated to be less virulent than wild type strains (9,74). This implies that the 263 

morphological switch from yeast to hyphae, and vice versa, accounts for the full virulence of 264 

C. albicans. While hyphae might be regarded as an invasive form required for piercing 265 
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through phagocytes and invading epithelium barrier, the yeast form is also needed for the free 266 

dissemination in the systemic infection.  267 

 268 

II. Epithelium invasion 269 

C. albicans invades the epithelial barrier via two different routes: active tissue invasion and 270 

passively-induced endocytosis. Recently, Wachtler and colleagues have performed an 271 

extensive study to elucidate the genes involved in the active penetration of epithelium by C. 272 

albicans at different stages: from epithelial attachment, tissue invasion and, eventually, tissue 273 

damage (112). Many hyphal-associated genes, including ALS3, HWP1, ECE1, SOD5, PHR1 274 

and PRA1 are upregulated in C. albicans in contact with epithelial cells. Hyphae is the 275 

invasive form of C. albicans found within epithelial cells in the invaded tissue (91). 276 

Therefore, upregulation of hyphal-associated genes upon contact with epithelial cells might be 277 

crucial for C. albicans active penetration of epithelial cells. In addition to active penetration, 278 

C. albicans can also cause transepithelial infection through induced endocytosis. It is 279 

demonstrated that ALS-3 mimics host cadherins and induces endocytosis through binding to 280 

E-cadherin on oral epithelial cells (87). This endocytosis process is passive and does not 281 

require cell viability, because even the killed C. albicans could be endocytosed by the 282 

epithelial cells. Once C. albicans is inside the epithelial cells, it forms hyphae leading to 283 

piercing of the cells through the function of EED1 (Epithelial Escape and Dissemination 1). 284 

An eed1Δ deficient strain failed to maintain hyphae formation and was trapped within the 285 

cells (123). In addition to invasion of epithelial cells, C. albicans is also able to downregulate 286 

epithelial TLR4 expression, which in turn increased the vulnerability of epithelial cells to C. 287 

albicans infection (114).  288 

 289 

III. Escape from Phagocytosis 290 
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A. Shielding of the surface PAMPs 291 

To phagocytose Candida, the host cells first need to “sense” the microorganism, which is 292 

achieved through recognizing the PAMPs of Candida. One mechanism through which this 293 

step is prevented is shielding of important PAMPs from recognition by PRRs. It has been 294 

shown that β-glucan is shielded by the outer cell-wall components, thus preventing the 295 

recognition of dectin-1 (35). In line with this, live C. albicans induced low amounts of 296 

cytokines in human peripheral blood mononuclear cells, yet heat-killed C. albicans in which 297 

the architecture of the cell wall is disrupted induced significant amounts of cytokines through 298 

the recognition of the now-exposed β-glucan by dectin-1 (39). Mckenzie and colleagues have 299 

also demonstrated that mutants deficient in O-linked and N-linked mannans were more 300 

readily phagocytosed by macrophages (64). However, during a live infection model, β-301 

glucans are exposed in the damaged Candida cells by the action of host factors, demonstrating 302 

the continuous “arm race” between the host and the pathogen (117).  303 

 304 

B.  Complement inhibition and degradation 305 

C. albicans possesses several strategies to interfere with complement activation in order to 306 

avoid phagocytosis or to reduce production of proinflammatory cytokines. It has been shown 307 

that secreted aspartic protease degrades C3b, thus inhibiting the opsonization of Candida by 308 

human serum in vitro (40). Furthermore, C. albicans could also bind on the cell surface the 309 

complement regulatory proteins, such as complement regulator C4b-binding protein, factor H, 310 

FHL-1 and plasminogen-binding surface protein, in order to inhibit the activation of the 311 

complement system (68,69,88). A recently identified C. albicans surface protein, Pra1, has 312 

been shown to bind factor H and C4b-binding protein to regulate complement activation 313 

(58,60), and subsequently blocks the activation and conversion of C3 (59). On the other hand, 314 

strikingly, Pra1 also serves as the primary ligand recognized by CR3 and facilitates 315 
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phagocytosis (99). This demonstrates once more the complex interplay between Candida and 316 

host innate immune system. 317 

 318 

C. Inhibition of phagolysosome formation 319 

An important step in the process of killing of a pathogen is the fusion of the phagosome 320 

containing the microorganism with the lysosomes. It has been recently reported that C. 321 

albicans can modulate intracellular membrane trafficking by inhibiting the formation of 322 

phagolysosome. Only live C. albicans was able to inhibit phagolysosome formation, but not 323 

heat-killed C. albicans, implying that this is an active inhibition dependent on the viability of 324 

the fungi. Interestingly, wild-type C. albicans is more capable of controlling phagosomal 325 

composition than the non-filamentous mutants (27). This is also in line with the fact that 326 

morphological transition is one of the critical virulence factors of C. albicans. However, the 327 

genetic background of C. albicans strains also plays an important role in the ability to survive 328 

within the phagosome. Tavanti and colleagues have reported that C. albicans isolates with c-329 

karyotype are more resistant to intracellular killing and able to replicate and escape from 330 

THP-1 cells as compared to the b-karyotype (103). It is to be expected that a further dissection 331 

of the underlying mechanisms through which C. albicans prevents the phagolysosome fusion 332 

may be translated into potential novel anti-fungal intervention strategies. 333 

 334 

D. ROS inhibition 335 

ROS production is a major antifungal mechanism in phagocytes. To counteract the oxidative 336 

stress, Candida species possess several defensive armories. C. albicans catalase has been 337 

suggested to counteract the respiratory burst, and a cat1Δ C. albicans mutant is less virulent 338 

and was cleared faster than a wild-type strain in an experimental model (76). Similarly, the C. 339 

albicans surface superoxide dismutase has also been implicated for counteracting the ROS 340 
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production from the phagocytes (34). In line with this, Wellington and colleagues have 341 

demonstrated that C. albicans and C. glabrata, but not S. cerevisiae, could actively suppress 342 

ROS production in a murine macrophage cell line. Interestingly, although the recognition of 343 

fungal cell wall is needed for the ROS production, as demonstrated by stimulating 344 

macrophages with heat-killed Candida or caspofungin-treated Candida, the Candida viability 345 

is needed for the suppression effect, implying an active role for live Candida in suppressing 346 

the ROS production (115). Candida vacuole formation was also suggested to play a role in 347 

resistance against stress and for hyphal growth (84). vps11Δ strain is defective in vacuole 348 

biogenesis, and as a consequence, more sensitive to oxidative stress and severely retarded in 349 

filamentous growth. However, although the partially functional vps11hr strain also bears 350 

similar defect in hyphae formation, vps11hr strain shows similar survival pattern as wild type 351 

strain in the macrophage J774A.1 cell line (85). 352 

 353 

E. Farnesol 354 

Farnesol was first identified as a quorum-sensing molecule (QSM) that repressed the yeast-to-355 

hyphae transition of C. albicans in an autoregulatory manner (44). Recently, farnesol has also 356 

been suggested to be a virulence factor of C. albicans. It has been demonstrated that farnesol 357 

might decrease macrophage viability through induction of ROS (1). Furthermore, farnesol has 358 

been suggested to protect C. albicans from oxidative stress via upregulating CAT1, SOD1, 359 

SOD2 and SOD4 (116). In an in-vivo infection model, the pretreatment with exogenous 360 

farnesol led to inhibition of Th1 cytokine IFN-γ and IL-12, and enhanced Th2 cytokine (77).  361 

 362 

On the other hand, farnesol also seems to function as a danger signal that activates anti-fungal 363 

defense. Exogenous farnesol upregulates TLR2 expression in epithelial cells, which results in 364 

more IL-6 and β-defensin 2 expression upon C. albicans stimulation (25). It has also been 365 
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demonstrated that murine macrophages produced more IL-6 when stimulated with wild-type 366 

C. albicans, than with a farnesol-deficient strain (36). In addition, the conditioned medium of 367 

C. albicans cultures has also been demonstrated to potentiate IL-6 and IL-8 production in 368 

human PBMCs (17), and it has been suggested that this may be attributed to the presence of 369 

farnesol. 370 

 371 

IV. Modulating cytokine production by soluble factors 372 

A lot has been learned in the past decades about the mechanisms through which Candida 373 

induces production of cytokines in the host, yet little is known about the active role of C. 374 

albicans in exploiting host cytokine production for its own benefit. 375 

 376 

Live C. albicans, but not C. krusei, has been demonstrated to inhibit IL-12 and IFN-γ 377 

production from human PBMCs (120). This IL-12 inhibitory effect was dependent on the 378 

viability of C. albicans, because both heat-killed C. albicans and C. krusei induced similar 379 

amounts of IL-12. Further studies showed that IL-12 inhibitory activity is due to the secretion 380 

of a glycoprotein (113) and signaling through selective activation of ERK mitogen-activated 381 

protein kinase (102). However, the identity of this soluble glycoprotein and the receptor 382 

responsible for the IL-12 inhibition signaling is unknown.  383 

 384 

Recently, we have also reported the active role played by soluble factors released by C. 385 

albicans. We have demonstrated that although conditioned medium from C. albicans culture 386 

by itself did not induce host cytokine production, it could amplify host IL-6 and IL-8 387 

production (17). On the other hand, the conditioned medium downregulated host IFN-γ 388 

synthesis, yet upregulated IL-10 production, thus shifting the T helper cell response from a 389 
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beneficial Th1 to a detrimental Th2 response (17). Further investigations about how and 390 

which soluble factor(s) are responsible are warranted. 391 

 392 

V. Inhibition of IL-17 production 393 

IL-17 has been suggested to be an important component of host defense against Candida 394 

infection (22,45). Candida cell wall components, especially mannans and β-glucans, are 395 

recognized by CLRs such as MR, dectin-1, and dectin-2, leading to inflammasome activation, 396 

IL-1β production, and subsequent induction of IL-17 (106,110). Recently, it was 397 

demonstrated that C. albicans could actively inhibit host IL-17 production by altering host 398 

tryptophan metabolism. Tryptophan metabolism is regulated by two distinct enzymes: 399 

Indoleamine 2,3-dioxygenase (IDO) and tryptophan hydroxylase. By inhibiting IDO 400 

expression,  C. albicans could shift tryptophan metabolism and this leads to less kynurenines 401 

and more 5-hydroxytrptophan metabolites. The increased 5-hydroxytryptophan subsequently 402 

inhibits host IL-17 production (20). 403 

 404 

Recognition of Candida colonization versus invasion-the Achilles’ heel of C. albicans 405 

C. albicans is a commensal microorganism in healthy individuals, but it is capable of causing 406 

serious infections if the protective mucosal barrier is breached. Therefore, immune 407 

discrimination between Candida colonization and invasion is of particular significance.  408 

 409 

A biphasic MAPK response has been proposed to be responsible to discriminate between C. 410 

albicans yeasts and hyphae by the epithelial cells (72). Moyes and colleagues have 411 

demonstrated that during the commensal stage of C. albicans, c-Jun was activated in the 412 

epithelial cells upon recognition of fungal cell wall components. The activation of c-Jun is 413 

independent of fungal morphology and leads to NF-κB activation, but not to production of 414 
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proinflammatory cytokines. However, activating of the second MAPK phase, consisting of 415 

MKP1 and c-Fos activation, is dependent on hyphae germination and an increased fungal 416 

burden, and thus induces a potent inflammatory response. A subsequent study further 417 

demonstrates that C. albicans cell wall glycosylation was indirectly required for induction of 418 

proinflammatory cytokines production, but not the activator of MAPK/MKP1/c-Fos pathway, 419 

in epithelial cells (75). This reveals a possible mechanism of epithelial discrimination between 420 

fungal colonization and invasion. 421 

 422 

In addition, hyphae formation was also identified to be the key event for triggering 423 

inflammasome activation and IL-1β secretion in murine macrophage (46). Since IL-1β is 424 

indispensible for Th17 differentiation, the recognition of invasive hyphae might be the crucial 425 

step for macrophages to discriminate between Candida colonization and invasion. We have 426 

demonstrated that Candida hyphae could specifically activate the inflammasome through the 427 

exposure of fungal PAMP such as β-glucans that are originally shielded in yeast (19), because  428 

β-glucan was demonstrated to induce both IL-1β mRNA transcription and inflammasome 429 

activation (49,52). Subsequently, the inflammasome activation and IL-1β production is 430 

crucial for Th17 differentiation and IL-17 production, and yeast-locked C. albicans strains 431 

defective in hyphae formation fail to induce IL-17 production. Therefore, macrophages serve 432 

as a gatekeeper to induce protective Th17 responses against C. albicans invasion by 433 

recognizing invading hyphae. 434 

 435 

Yeast-to-hyphae transition has been demonstrated to be the crucial virulence factor for C. 436 

albicans, and is important for tissue invasion and for escaping from phagocytes. This, 437 

however,  also puts C. albicans at risk to be more efficiently recognized by the host and 438 

induces an additional array of host defense mechanisms (Figure 3).   439 
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 440 

Concluding remarks and future directions 441 

 442 

In the past decades, much has been learned about the mechanisms through which host innate 443 

immunity recognizes, responds to, and defends against Candida species. In addition, many of 444 

the fungal virulence factors that contribute to pathogenesis have been identified, and sustained 445 

efforts have been made to study the interplay between Candida and the host defense.  446 

However, one can envisage that the interaction between Candida and the host in real life will 447 

be more complicated, and important questions remain to be answered. One such topic is 448 

represented by the mechanisms through which the sensing of invading Candida by the 449 

epithelial cells prepare and educate the innate cells in the fight against invasion. It is to be 450 

expected that the cross-talk between epithelial cells and immune cells will draw more 451 

attention in the years to come. Similarly, much remains to be investigated on the pathways 452 

through which the morphology of Candida facilitates its pathogenicity. Moreover, several 453 

crucial questions related to mucosal antifungal immunity remain unanswered. For example, 454 

what are the differences between the host immune responses at the oral mucosa and the 455 

vaginal mucosa, and what are the consequences of the deregulation of antifungal mucosal 456 

immunity for autoinflammatory diseases such as Crohn’s disease and ulcerative colitis? These 457 

are only a few of the questions that need to be answered in the future in order to get an overall 458 

view about the interplay between Candida and host innate immune defense. 459 

460 
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Figure Legends 
Figure 1 

 

 

The major pattern recognition receptors (PRRs) and their corresponding Candida PAMPs. 

Candida cell wall components are mainly recognized extracellularly by Toll-like receptors 

and C-type lectin receptors on the host cell surface and leads to different downstream 

signaling such as chemokine/cytokine production and phagocytosis. Once Candida is 

internalized/phagocytosesd, the fungal PAMPs could further activate TLR9 or NLRP3 

inflammasome activation. 



34 
 

Figure 2 

 

 

Candida albicans host innate system evasion strategies. A. Yeast to hyphae transition. B. 

Downregulation of epithelial TLR4 expression. C. Shielding of PAMP from PRR recognition. 

D. Inhibition or degradation of complement system. E. Inhibition of phagolysome formation. 

F. Modulation of T cell function. 
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Figure 3 

 

 

The schematic diagram of the  interplay between Candida albicans and host innate immune 

system at the mucosal surface. Black lines denote host defense mechanisms. Red lines denote 

Candida invasion/escape mechanisms 








